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We present a compact expression for the field theoretical actions based on the symplectic analysis of  coadjoint orbits of  Lie 
groups. The final formula for the action density a~ becomes a bilinear form ( (S, 1/2 ), (y, my) ), where S is a 1-cocycle of  the Lie 
group (a schwarzian type of derivative in conformal case), 2 is a coefficient of  the central element of  the algebra and ~--- (y, my) 
is the generalized Maurer-Cartan form. In this way the action is fully determined in terms of the basic group theoretical objects. 
This result is illustrated on a number  of  examples, including the superconformal model with N=2 .  In this case the method is 
applied to derive the N =  2 superspace generalization of the D = 2 Polyakov (super-)gravity action in a manifest (2, 0) supersym- 
metric form. As a byproduct we also find a natural (2, 0) superspace generalization of the Beltrami equations for the (2, 0) 
supersymmetric world-sheet metric describing the transition from the "conformal" to the "chiral" gauge. 

1. Actions on the coadjoint orbits for groups with 
central extension 

Recently, symplectic methods have been em- 
ployed for the purpose of constructing actions of dy- 
namical systems on the coadjoint orbits of a Lie group 
G [ 1-3 ]. For the fixed covector U one defines the 
coadjoint orbit CV of G on which there exists a ca- 
nonical symplectic 2-form [4,5] which is given by 

n~; = ½ ( u, [~¢, .~ ] } ,  (1) 

where U is a generic point on 6b, ~¢ is a 1-form taking 
values in the Lie algebra of G and ( , } is an invar- 
iant bilinear form. In this recipe ~ is obtained as a 
solution to the following basic equation: 

dU= ad?~ U. (2) 

The infinitesimal coadjoint representation ad*~ is de- 
fined in terms of the infinitesimal adjoint 
transformation 

(ad*~U,X}=- (U ,  a d ~ X } = - ( U ,  [~k',X]). (3) 
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It follows from definition (2) that ~¢ obeys the 
Maurer-Cartan equation. Observe namely that, since 
d2U=0 we have for the fixed element X of the Lie 
algebra of G 

d(  U, [ ,)3', X] } =0  (4) 

o r  

(ad*~ U, [e~u, X] ) = - ( U ,  [ d ~ , X l )  ; (5) 

using the Jacobi identity and eq. (2) we can identify 
d ~?/to be 

d ~ =  ½ [ ~¢/, 4k'], (6) 

which is our basic Maurer-Cartan equation. 
The symplectic form g2c, is closed, hence (locally) 

exact: 

£2~ = d a  . (7) 

The simplest action, describing the dynamical sys- 
tem defined by E2v and having the orbit C~ as its phase 
space, takes the form 

,~1= j- a ,  (8) 

where the integral is over a curve on the orbit (~t,. 
Thus, finding the geometric action (8) equals the 

problem of solving eq. (2) for the 1-form ~. This is 
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achieved by parametrizing the elements U of the or- 
bit 6t.,o through the group variables ge G as 

U = - U(g )  =Ad~ Uo, (9) 

where Uo is a fixed generic point of this orbit. With 
this parametrization, eq. (2) looks as 

d (Ad* (g) Uo ) = ad*,~(Adg Uo). (10) 

From now on, we deal only with groups with cen- 
tral extensions; let G be the central extension of G. 
Accordingly the elements of the corresponding Lie 
algebra are represented by pairs (a, n), where a is in 
the Lie algebra of G while n is a central element. The 
dual vector is written as (B, c). 

We describe the bilinear form ( , ) on CJ in terms 
of the bilinear form ( , )o on G as follows: 

( ( , c ) ,  ( , n ) ) = ( , ) o + c n .  (11) 

We now assume that the adjoint transformation by 
g e G  on the (a, n) pair takes the following general 
form: 

Adg(a,  n)  = (goa, n +  2 ( S ( g  -~ ), a ) o )  , ( 12 )  

where goa defines the standard adjoint transforma- 
tion on G. 

By invariance of the bilinear form eq. (12) leads 
to the following coadjoint transformation: 

Adg(B, c) = ( g o * B + c 2 S ( g ) ,  c ) ,  (13) 

where o* denotes the coadjoint action for the group 
G. 

One easily verifies that S must satisfy the following 
cocycle condition [ 4 ] : 

(8S) (g~, g2) =g~ o*S(g2) - S ( g j g 2 )  +S(g~ ) = 0 ,  
(14) 

as well as relations S (  I )  =0  and S ( g )  = - go*S(g  L ) 

in order to ensure the group property of Adg in (12). 
The adjoint representation of the Lie group induces 
the adjoint representation of its Lie algebra, 

ad( . . . . .  )(a2,  t /2 )=  [ ( a l ,  r/ l) ,  (a2, n2) ] , (15) 

where the commutator of the Lie algebra is given by 

[ (ai ,  nl ), (a2, n2) ] = ( [al,  a2], - - 2 ( s ( a l  ), a 2 )0 )  ; 
(16) 

here s (a  ) is the infinitesimal limit o f S ( g  ) which de- 
fines the Lie algebra cocycle in the above formula. 

Using eq. (3) one can find the corresponding 
coadjoint action 

ad~'~,n) (B, c) = (ad* (B) + c 2 s ( a ) ,  O) . ( 17 ) 

Inserting Uo= (Bo, c) and the above definitions we 
find by comparing terms linear in c that 

d(s, l/2)=ad'~y,,,~>.)(S, 1/2) (18) 

with !~'= (y, my). One sees that for the group with the 
central extension the pair (S, 1/2) becomes an ele- 
ment of the coadjoint orbit, while Swas a covector of 
the original group G. One easily verifies that indeed 
(S, 1/2) transforms according to the coadjoint ac- 
tion ( 13 ) 

g 2 ~ g l g 2  

(S (g2 ) ,  1/2) ~ ( S ( & g e ) ,  1/2) 

=Adg, (S (g2) ,  1 /2 ) ,  (19) 

as follows from the cocycle condition (14). 
We will now prove the main result of this paper. 

We propose the following compact expression for the 
c-dependent part of the action density as defined in 
(8): 

a , .=  - 2 c (  (S, 1/2), ,~¢/) . (20) 

We prove this identity by showing that acting with 
the exterior derivative we recover -Qc; the c-depen- 
dent part of (7). 

d a , = - 2 c ( d ( S ,  1/2), ~ ' ) - 2 c (  (S, 1/2), d~/) ; 
(21) 

in components we have d?~= (dy, dm~.). Recall that 
from (3), ( 15 ) and ( 18 ) we have an identity 

(d(S,  1/2), ,.)~') = - ( (S, 1/2), [?¢/, ?¢/1 > 

= - 2 (  (S, 1/2), d.?#), (22) 

which leads to 

dc~c=-  ½2c(d(S, 1/2), '-. '~')=-½2c(dS, y ) o ,  
(23) 

which provides an alternative and useful formula for 
derivation of % by factoring out the exterior deriva- 
tive d. 

We can verify that eq. (23) reproduces the c-de- 
pendent part (2,. of the symplectic 2-form g?v by in- 
serting U=Adg(Bo, c) into expression ( 1 ) and col- 
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lecting the terms proportional to c. A short calculation 
gives the desired result 

E2c = ½ ( (c2S, c), ad~ gg) = - ½2c(d(S, 1/2), ~ ) ,  
(24) 

where we used relations (3), ( 15 ) and ( 18 ). 
Note that in components the expression for the ac- 

tion density given by (20) reads 

c~< = - 2 c [  (S, Y>o -I- ( 1/2)my] , (25) 

where the central element my of qY is fixed by the 
Maurer-Cartan equation (6) and explicitly given by 

dmy=½2(s(y), y>o. (26) 

Let us now concentrate on the remaining (c-inde- 
pendent) part off2v, 

E2Bo = ½ (Ad~(Bo, 0), [~,  ~1> . (27 

From the alternative expressions for I2Bo 

g-2B o = (Adg(Bo, 0), d~>  

I * = - ~ ( d  Adg(Bo, 0), ~?~/> , (28 

we easily prove that 

£2Bo = - d (  (Ad~(Bo, 0), ~ )  ) ,  (29 

from which it follows that 

a.o = - (Ad~(Bo, 0), ~ ) .  (30) 

Finally, we collect the two contributions aso and 
ac into the total action density a: 

a = a s o  +a~ = - (Ad~(Bo, c), ~/) . (31) 

From the group symmetry 

Adgj,(Bo, c) =Ad~(Bo, c) (32) 

under the action of the elements h~H of the station- 
ary subgroup H, one derives the corresponding invar- 
iance of the action d in (8). 

(v, u ) o =  Tr J uvdx, (33) 

where we integrate over S ~. 
The transformation go u is naturally given by gug-  

and the trace property gives go*v=gvg- ~. 
The first step in this example is the derivation of 

the Maurer-Cartan form for which we use eq. (10). 
This gives 

~ =  (y, my) = (dgg -~, my) . (34) 

In order to find the central element m.~ we use the 
component version of the Maurer-Cartan equation 
(26) arriving at 

dmy = ~2(s(y), Y)o 

=--~,Zd Tr j {g-l dgg-10g 

+ d - ' [ ( d g g - ' )  2 0 g g - ' ] } .  (35) 

The next step is to solve eq. (18) for S(g) upon in- 
serting there the result (34) ~/= (y, my). One easily 
finds 

S(g)=Ogg-'.  (36) 

Eq. ( 36 ) together with the normalization 2 = - 1/2n 
fully specifies the adjoint and coadjoint transforma- 
tions in (12) and (13). 

Inserting into expression (25) the above values of 
S, y and my we obtain the Wess-Zumino-Novikov- 
Witten action [ 2 ] 

o l k = - k T r  f [g-' dgg-~ Og 

- d - ' ( ( d g g - ' )  2 0 g g - ' ) ]  . (37) 

From eq. (30) one easily obtains the remaining part 
ao 0 = - Trf ( vog- ~dg) of the total action density. 

2.2. Virasoro algebra 

2. Examples 

2. I. Kac-Moody 

Following refs. [2,6] we denote elements of the 
Kac-Moody algebra by pairs (u(x),  m), while the 
dual space elements are (v(x), -k) .  The natural bi- 
linear form ( , ) 0 is 

In the case of the Virasoro algebra, the bilinear form 
for the pair (g(x), n) and the dual (b(x), c) is de- 
fined in terms of [2,7,8] 

( b , g ) o =  i b(x)g(x) dx. (38) 
, )  

Along the lines of discussion in the previous sec- 
tion we specify the fundamental objects for this case. 
The adjoint transformation go u is now described by 
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the reparametrization x - -F(x )  for x6S 1 and 
Fedi f fS  1, explicitly we have g ( x ) ~ [ 1 / F ' ( x ) ]  
× g ( F ( x ) )  following from the fact that the vector 
field is g(x)  O/Ox. Therefore the coadjoint action is 
given by b(x) - ,F '  ( x )Zb (F(x )  ). 

The coefficient of  the central element of  the 
Virasoro algebra dictates the choice of  2 = - 1/24m 

The 1-cocycle of  the conformal group is given by 
the schwarzian derivative 

2 23(;:)  39, 

In this way we have completely determined the ad- 
joint and coadjoint transformations in ( 12 ) and ( 13 ) 
for the Virasoro case. 

The Maurer-Cartan form is obtained from eq. 
(10): 

~g(F) = ( y ( f ) ,  my) = ~7 ,  my (40) 

with the central term my derived from (26):  
2 

1 f d fI~_~'" (~') ] d,n .... ~ y'" y= ~ - y( F) . 

(41) 

Substituting our expression for S, ?k' and 2 into eq. 
(25) we obtain [2] 

c - 2  dF  (42) 

2.3. Superconformal models, N= 2 case 

Let us make a brief recapitulation of  the structure 
of  the N-extended superspace [9].  We firstly intro- 
duce coordinates z =  (x, 0~), i=  1, 2, ..., N, with the 
left supercovariant derivative D ~= 0o, + 0 ~ 0x 
satisfying 

{D', Da} =26u0~. (43) 

The action of  the superconformal group is given by 
the analytic transformations 

z =  (x, 0 ' ) - - .5= (2, ~7i), (44) 

subject to the constraint 

D ' =  ( D @ ) I ~ ,  (45) 

leading to 

D'2 = 0"JD @ ,  ( 46 ) 

(D@) (Dk0 j) =6ik( 0~2+~ 8x ~j) , (47) 

d [ t  m { DOoxg) 1/2) = + e t \  ~Ox2+ ~ _ 1 . (48) 

This constraint can be solved in terms of  the infini- 
tesimal unrestricted superfield ~ (z) [ 9 ] : 

6 X = ~ - l O i D i e ,  60i=½Di~. (49) 

Extending the case of  the Virasoro algebra to N-ex- 
tended superspace we introduce the pair (g(x, 0O, 
n). The dual (B(x, 0') ,  c) is defined according to the 
following bilinear form: 

< (B, c), (g, n) > = <B, g>o +cn, (50) 

with <B, g>o=jdzB(x,  O)g(x, 0). 
The adjoint action go u can be generally described 

for all N as 

g(x, 0') -, [det(DO) ]-2/Xg(2, 0') , (51) 

while the coadjoint action go *B takes the form 

B(x, 0 ~) ~ [de t (D0)  ] ( 4 -  N ) / N B ( . ~ ' ,  O' ) . ( 52 ) 

We are now ready to determine a Maurer-Cartan 
form y for an arbitrary N. We use an obvious identi- 
fication LG= (Bo(x, 0'), c) in eq. (10) and isolate 
the terms 3~Bo. The calculation is based on the 
identity 

dBo = O,Bo 6]'+ dO i [)IBo , (5 3) 

where for convenience we introduced the symbol 

fiT= d 2 +  0 ~ dO t . (54) 

Furthermore, using eq. (43) and the constraint (45) 
we find the following technical identity: 

0~ = (0x(7 k) IT)a+ [det (D0) ]2IN 02 . ( 55  ) 

Now comparing on both sides of  (10) the terms in 
0xBo we obtain the group component  of  the Maurer-  
Cartan form, 

aT 
Y= [de t (D0 ~) ]2ix" (56) 

What remains to complete our construction for the 
general superconformal models is to discuss the cor- 
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responding 1-cocycles. They turn out to be the super- 
schwarzian derivatives listed in ref. [ 9 ] for 0 ~< N~< 4. 
The cocycle condition (14) translates in the case of 
superconformal transformations to [9 ] 

SN(z, z) = [det(D0) ](4--N)/NsN(z, ~) -[-sN(z, Z) . 

(57) 

Let us now discuss in greater detail the special ex- 
ample of N = 2  (for the discussion of N=  1 we refer 
to refs. [ 10, 11 ] ). It is convenient here to choose the 
complex basis [12,13] 0=(01+i02)/X/~, O: 
(0 ~ - i02)/,,/2, with the supercovariant derivatives 
D = 0 o + 0 0 x  and D=0o+00x .  Note, that D2=17) 2 
=0,  {D, I)} = 20x and the superconformal condition 
(45) allows the choice 

D 0 = 0 ,  I ) f f=0.  (58) 

We also rewrite in this notation the infinitesimal 
transformation (49): 

6x=e-l(OD+OD)e, 60=½D~, d0=lIT)e. (59) 

In this basis the adjoint and coadjoint actions of 
the extended N= 2 superVirasoro group look as 

n ) = / / g ( x ,  ~ if) Ad~(g, k - (D0) ( D O )  

Ii ) n -  ~ dxdOdOX(z;5-1)g(x,O,O) , (60) 

(61) 

In the above equations S(z; 2) is the superschwar- 
zian derivative 

S(z;~)= axDg ax130_2 axOax# 
- D g -  D -=i f -  (Dg)(D0)  (62) 

and the coefficient 2 is 2 = - 1 / 8 zr. Note, that in going 
to the complex basis use was made of the following 
N= 2 relation: 

(D#) (I7)0) =det  (D0) .  (63) 

The Maurer-Cartan 1-form y becomes now 

aT 
Y= (D0) (I)0) " (64) 

To derive the action it is convenient to work with 
eq. (23) yielding 

d°zc= 1 ~  d x d 0 d 0 d X y  (65) 

with S, y as in (62), (64). Making use of integrations 
by parts and of the relations d (6 [ )=2d0d0 ,  
D(6[) =2  D0d0and  I ) (6 [ )=2  I)0d0, it is not diffi- 
cult to extract the total exterior derivative from the 
integrand in (65): 

C a c - -  8zr f dxdOd#OxOd~-OxOdO 
(DO) (DO) (66) 

This term enters the total action together with aBo 
(30), 

aBo = - J dx d0 dOBo fiT. (67) 

This result generalizes the D--2 Polyakov 
(super)gravity action [14] in a manifest (2, 0) su- 
persymmetric form: 

w~'p=2 = - f dtdxdOdO(Bo(t, 5) 

× (a,~+Oa,~+~a,O) 

+ ~  (D&(b0)  / '  
(68) 

where t indicates the parameter of the curve in the 
general eq. (8). 

3. (2, 0) supersymmetric Beltrami equations 

The following superconformal reparametrization 
on the (2, 0) superspace: 

(t,x, O, #)~(x+,x -, ¢, 6), 
x+=t, x-=~=2(t,x,O, 6), 

(~=O=&t,x,O, 6), ~=O=O(t,x,O,O), (69) 

is being induced by the superconformal group trans- 
formation (44). Let us also introduce the inverse su- 
perconformal reparametrization with respect to (69): 

t=x +, x=f(x+,x-,q),~),  

O=~ff(x+,x-,q),~), O=~(x+,  x - ,  0, ~) . (70) 
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The inverse t ransformat ion (70) is subject to con- 
straints of  the same form as ( 4 5 ) - ( 4 7 )  for fixed x + 
[see eq. (75)  below].  

Now, in complete analogy with the purely bosonic 
case [2 ] and the ( 1, 0) supersymmetr ic  case [ 15 ], 
one can show that  eqs. (70)  describe precisely the 
t ransi t ion from the "conformal"  to the "chi ra l"  [ 14 ] 
gauge for the (2, 0) supersymmetr ic  world-sheet 
metric on the (2, 0) superspace. 

Indeed let us consider the following conformal form 
of  the (2, 0) supersymmetr ic  world-sheet metr ic  in 
terms of  the local coordinates  (t, x, 0, ~7): 

d s2=  (Off) (D#)  (ckv+ffd0+ 0 dO) d t ,  (71)  

where the functions 0, #a re  the same as in (69) .  It is 
straightforward to show that, upon performing the 
inverse superconformal t ransformat ion (70)  and 
taking into account the constraints (46) ,  (47) ,  the 
metric (71)  acquires the following "chiral-gauge" 
form in terms of  the new local coordinates  

(x +, x - ,  O, 6): 
ds2= ( d x -  + ~ d 0 + 0  d6)  dx  + + H +  + (dx  + ) 2, 

(72)  

H+ + = (0+ f +  ~ 0+ ~,+ ~' ~+ ~)  

× (~_ f +  g) 0_ ~,+ gt 0_ gT) -1 (73) 

It was found already in ref. [13] (at  least in the li- 
nearized case) that all geometric  constraints  in the 
(2, 0) superzweibeins can be solved in terms of  six 
unconstra ined (2, 0) superfields [i.e. (2, 0) prepo- 
tent ials] .  Using the residual gauge symmetr ies  one 
can fix all but one of  these prepotent ials  - the confor- 
mal prepotent ial  H+ +, which is naturally ident if ied 
with the superfield (73)  entering (72) .  Rewrit ing 

( 73 ) in the form 

- H + + ( O  f +  b'0_ ~/+ 9/O_ qT) = 0  (74) 

and recalling the constraints on f, ~u, ~ [cf. eqs. (45) ,  
( 4 7 ) ] :  

iSf-~,~5~=o, ~Sf- ~%,= 0, 
5 ~ / = 0 ,  5q7=0 (75) 

(where 17)= 0/a¢7+¢ ~_, I~- -~ /~0+~70 ), one can 
natural ly identify (74)  as a (2, 0) superspace gener- 
al ization of  the Beltrami equations for the (2, 0) su- 

persymmetr ic  world-sheet metric. H+ + is the (2, 0) 
supersymmetr ic  analog of  the Beltrami differential  
describing the transi t ion between the "chira l"  and 
"conformal"  gauges (for discussions of  the ( 1,0 ) and 
( 1, 1 ) supersymmetr ic  cases we refer to ref. [ 15 ] and 
to ref. [ 16], respectively)  #1 
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